494 research outputs found

    Swine flu: lessons we need to learn from our global experience

    Get PDF
    There are important lessons to be learnt from the recent ‘Swine Flu’ pandemic. Before we call it a pandemic, we need to have appropriate trigger points that involve not only the spread of the virus but also its level of virulence. This was not done for H1N1 (swine flu). We need to ensure that we improve the techniques used in trying to decrease the spread of infection—both in the community and within our hospitals. This means improved infection control and hygiene, and the use of masks, alcohol hand rubs and so on. We also need to have a different approach to vaccines. Effective vaccines were produced only after the epidemic had passed and therefore had relatively little impact in preventing many infections. Mass population strategies involving vaccines and antivirals also misused large amounts of scarce medical resources

    Fatal Cases of Influenza A in Childhood

    Get PDF
    In the northern hemisphere winter of 2003–04 antigenic variant strains (A/Fujian/411/02 –like) of influenza A H3N2 emerged. Circulation of these strains in the UK was accompanied by an unusually high number of laboratory confirmed influenza associated fatalities in children. This study was carried out to better understand risk factors associated with fatal cases of influenza in children.Case histories, autopsy reports and death registration certificates for seventeen fatal cases of laboratory confirmed influenza in children were analyzed. None had a recognized pre-existing risk factor for severe influenza and none had been vaccinated. Three cases had evidence of significant bacterial co-infection. Influenza strains recovered from fatal cases were antigenically similar to those circulating in the community. A comparison of protective antibody titres in age stratified cohort sera taken before and after winter 2003–04 showed that young children had the highest attack rate during this season (21% difference, 95% confidence interval from 0.09 to 0.33, p = 0.0009). Clinical incidences of influenza-like illness (ILI) in young age groups were shown to be highest only in the years when novel antigenic drift variants emerged.This work presents a rare insight into fatal influenza H3N2 in healthy children. It confirms that circulating seasonal influenza A H3N2 strains can cause severe disease and death in children in the apparent absence of associated bacterial infection or predisposing risk factors. This adds to the body of evidence demonstrating the burden of severe illness due to seasonal influenza A in childhood

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses

    From regional pulse vaccination to global disease eradication: insights from a mathematical model of Poliomyelitis

    Get PDF
    Mass-vaccination campaigns are an important strategy in the global fight against poliomyelitis and measles. The large-scale logistics required for these mass immunisation campaigns magnifies the need for research into the effectiveness and optimal deployment of pulse vaccination. In order to better understand this control strategy, we propose a mathematical model accounting for the disease dynamics in connected regions, incorporating seasonality, environmental reservoirs and independent periodic pulse vaccination schedules in each region. The effective reproduction number, ReR_e, is defined and proved to be a global threshold for persistence of the disease. Analytical and numerical calculations show the importance of synchronising the pulse vaccinations in connected regions and the timing of the pulses with respect to the pathogen circulation seasonality. Our results indicate that it may be crucial for mass-vaccination programs, such as national immunisation days, to be synchronised across different regions. In addition, simulations show that a migration imbalance can increase ReR_e and alter how pulse vaccination should be optimally distributed among the patches, similar to results found with constant-rate vaccination. Furthermore, contrary to the case of constant-rate vaccination, the fraction of environmental transmission affects the value of ReR_e when pulse vaccination is present.Comment: Added section 6.1, made other revisions, changed titl

    The Cost of Simplifying Air Travel When Modeling Disease Spread

    Get PDF
    BACKGROUND: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. METHODOLOGY/PRINCIPAL FINDINGS: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. CONCLUSIONS/SIGNIFICANCE: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed

    Respiratory failure presenting in H1N1 influenza with Legionnaires disease: two case reports

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Media sensationalism on the H1N1 outbreak may have influenced decisional processes and clinical diagnosis.</p> <p>Case Presentation</p> <p>We report two cases of patients who presented in 2009 with coexisting H1N1 virus and Legionella infections: a 69-year-old Caucasian man and a 71-year-old Caucasian woman. In our cases all the signs and symptoms, including vomiting, progressive respiratory disease leading to respiratory failure, refractory hypoxemia, leukopenia, lymphopenia, thrombocytopenia, and elevated levels of creatine kinase and hepatic aminotransferases, were consistent with critical illness due to 2009 H1N1 virus infection. Other infectious disorders may mimic H1N1 viral infection especially Legionnaires' disease. Because the swine flu H1N1 pandemic occurred in Autumn in Italy, Legionnaires disease was to be highly suspected since the peak incidence usually occurs in early fall. We do think that our immediate suspicion of Legionella infection based on clinical history and X-ray abnormalities was fundamental for a successful resolution.</p> <p>Conclusion</p> <p>Our two case reports suggest that patients with H1N1 should be screened for Legionella, which is not currently common practice. This is particularly important since the signs and symptoms of both infections are similar.</p

    Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.</p> <p>Results</p> <p>Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.</p> <p>Conclusions</p> <p>HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.</p

    Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Get PDF
    Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease.We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001).The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management

    Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function

    Get PDF
    Background: Influenza virus is a major cause of respiratory disease worldwide and Streptococcus pneumoniae infection associated with influenza often leads to severe complications. Dendritic cells are key antigen presenting cells but its role in such co-infection is unclear.Methods: In this study, human monocyte derived-dentritic cells were either concurrently or successively challenged with the combination of live influenza virus and heat killed pneumococcus to mimic the viral pneumococcal infection. Dendritic cell viability, phenotypic maturation and cytokine production were then examined.Results: The challenge of influenza virus and pneumococcus altered dendritic cell functions dependent on the time interval between the successive challenge of influenza virus and pneumococcus, as well as the doses of pneumococcus. When dendritic cells were exposed to pneumococcus at 6 hr, but not 0 hr nor 24 hr after influenza virus infection, both virus and pneumococcus treated dendritic cells had greater cell apoptosis and expressed higher CD83 and CD86 than dendritic cells infected with influenza virus alone. Dendritic cells produced pro-inflammatory cytokines: TNF-α, IL-12 and IFN-γ synergistically to the successive viral and pneumococcal challenge. Whereas prior influenza virus infection suppressed the IL-10 response independent of the timing of the subsequent pneumococcal stimulation.Conclusions: Our results demonstrated that successive challenge of dendritic cells with influenza virus and pneumococcus resulted in synergistic up-regulation of pro-inflammatory cytokines with simultaneous down-regulation of anti-inflammatory cytokine, which may explain the immuno-pathogenesis of this important co-infection. © 2011 Wu et al; licensee BioMed Central Ltd.published_or_final_versio
    corecore